Grad-div stablilization for Stokes equations
نویسندگان
چکیده
In this paper a stabilizing augmented Lagrangian technique for the Stokes equations is studied. The method is consistent and hence does not change the continuous solution. We show that this stabilization improves the well-posedness of the continuous problem for small values of the viscosity coefficient. We analyze the influence of this stabilization on the accuracy of the finite element solution and on the convergence properties of the inexact Uzawa method.
منابع مشابه
A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations
This article studies two methods for obtaining excellent mass conservation in finite element computations of the Navier-Stokes equations using continuous velocity fields. With a particular mesh construction, the Scott-Vogelius element pair has recently been shown to be inf-sup stable and have optimal approximation properties, while also providing pointwise mass conservation. We present herein t...
متن کاملMass Conserving Schemes for Saturated Groundwater Flow
Local mass conservation is of great importance for accurate simulation of fluid flows, especially if the resulting velocity field is to be coupled to a transport equation. Previous work on simulation of saturated groundwater flows have used both mixed finite element methods and discontinuous Galerkin methods to achieve local mass conservation. However, legacy code using a continuous Galerkin fi...
متن کاملEnabling numerical accuracy of Navier-Stokes-alpha through deconvolution and enhanced stability
We propose and analyze a finite element method for approximating solutions to the NavierStokes-alpha model (NS-α) that utilizes approximate deconvolution and a modified grad-div stabilization and greatly improves accuracy in simulations. Standard finite element schemes for NS-α suffer from two major sources of error if their solutions are considered approximations to true fluid flow: 1) the con...
متن کاملGrad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements
The approximation of the time-dependent Oseen problem using inf-sup stable mixed finite elements in a Galerkin method with grad-div stabilization is studied. The main goal is to prove that adding a grad-div stabilization term to the Galerkin approximation has a stabilizing effect for small viscosity. Both the continuous-in-time and the fully discrete case (backward Euler method, the two-step BD...
متن کاملDifferential geometry and multigrid for the div-grad, curl-curl and grad-div equations
This paper is concerned with the application of principles of differential geometry in multigrid for the div-grad, curl-curl and grad-div equations. First, the discrete counterpart of the formulas for edge, face and volume elements are used to derive a sequence of a commuting edge, face and volume prolongator from an arbitrary partition of unity nodal prolongator. The implied coarse topology an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 73 شماره
صفحات -
تاریخ انتشار 2004